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WHAT IS CHIRALITY ?

| call any geometrical figure, or group of points,chiral, and say that it haschirality
if its image in a plane mirror, ideally realized, cannot be brcught to coincide with itself.

Lord Kelvin, 1904

Isometry: conservation of distances: combination of translationstiarts, and mirror inversions.
Direct isometry: only translations and rotations.

Indirect isometry: translations and rotations combined with@BD number of mirror inversions.

Achirality : an achiral object isidentical to one of its images through an indirect isometry.
Chirality : an object which is not achiral is chiral.

Chirality measure: quantitative measure of the deviation from achirality.

Remark 1: the full definitions of symmetry and chirality are more complex (greheory).

Remark 2: despite a common belief, the orientability of spacB@T required to define chirality.



PROBLEM

EUCLIDEAN SYMMETRY AND CHIRALITY ARE NOT STRICTLY GEOMETRI C CONCEPTS
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The cube (A) is NOT symmetric; the cube (B) has a C2 rotation axis; botlare CHIRAL

A mechanism to associate points is needed.

We built it in a general framework, not necessarily involvirgymmetry or chirality.



MOLECULAR GRAPHS

e Molecular graphs are realized Ry.

e The nodes are the atoms and the edges are the chemical bonds.

e Molecular graphs are simple, undirected, no loops on nodes.

e Nodes are labelled with colors: atom type (atomic symbol), atanass, charge etc.

e Edges are labelled with colors: chemical bond type.

¢ In general, molecular graphs are not connected: the connex canizoare treated separately.

Some examples of molecular graphs:

*”H Negs
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The water molecule H-O-H has 3 nodes and 2 edges. Its graph hasri@aphisms.

Br-CHF-CI has 5 nodes with all different colors, and 4 edges wighstime color.
There is only one automorphism.

The molecular graph of the cyclohexane ringlas 12 automorphisms, not 6! automorphisms.



MEASURING THE ASYMMETRY OF DISTRIBUTIONS
Symmetric (i.eachiral) distributions: binomial of parametéy2, Gauss, etc.

Asymmetric (i.e.chiral) distributions: exponential, Poisson, etc.

Remark: for univariate distributions, thereN©®© direct symmetry.

X is a random variable of expectatiprand variance>

Coefficient of asymmetry: e.g. Pearson’s skewness (18%()"(‘“)3

Yo

But: it exists asymmetric distributions with null skewness !

We need an asymmetry coefficient for multivariate distidost
which takes the valu@ if and only if the distribution isndirect symmetric.

We must handle colors, molecular graphs, and multivariatisuibutions.




We first need a method able to fix a pairwise correspondencerfpgation) in the discrete case,
while able to operate in the continuous case (fix a bijection).

CLASSICAL MIXTURES OF DISTRIBUTIONS

A mixture distribution function is a convex linear combinatimidistribution functions.

The coefficients of the convex linear combination are the driblias associated to
the mixing distribution. This latter is usually discrete amndté.

The mixed distributions (calledomponentsare usually those of random vectors taking valueR4n
These components should not be confused with/tbemponents of some vector Bf.

We are going to do an unusual presentation of mixtures of disimifs.




COLORED MIXTURES

We consider a two steps process:
(1) Pick a "color”
(2) Thed-variate distribution is determined by the choice of the color

Measurable spad€’ x R?, A ® B):
C'. space of colors, not empty. Examples: = R; C = {red,
A: o-algebra or”
B: Borel o-algebra orR?

K is arandom variable defined on the probability sp@ceA, P),
P is the probability distribution ofs.

To each color: € C we associate a probability distributidt of R?
via the function® : ¢ — P. = ®(c¢).

, blue}.

The value of the distribution function @, at the pointz is a conditional probability noted'(z|c).

We consider the random variall&’, X), X being a random vector taking valuesRA.

X is called acolored mixturewhen its distribution functio” is: F(z) = [ F(z|c)P(dc)

ceC



COUPLES OF COLORED MIXTURES

Now we consider the couple of random variables,, X), (K,,Y)),
whereX andY are colored mixtures.

P,, . joint probability distribution of X, K)

W conditional joint distribution function associated(tb,, ®,); ingenerald, # o,

The joint distribution functiori’ of the couple X, Y') is got by integration:

Wi(x,y) = f f W(x,y\cx,cy)Pw(dcx,dcy)

cz€C cyeC

Nothing new until now about mixtures and couples of mixtures
except that we bother with a slightly complicated presermiat



THE COLORED MIXTURES MODEL:
HANDLING THE CONSTRAINTS ON CORRESPONDENCES

Additional assumption | K, = K,

Consequences:
Pyy(dey, dey) = P(de;)op,—c,dc, (¢ is the Dirac function)

W(z,y) = [ W(x,y|c)P(dc) (P is the marginal of?,,, i.e. the distribution of<, or K)).
ceC

The dependancy betwedki, and K, in the space of colors
induces a dependancy between the tyv.andY'.

In other words, with probability the two picked colors are the same, so that
the d-variate distributions associated respXandY are "constrained” to be selected together.

E.g., when these twa-variate distributions are those of a.s. constant random vectors,
we have put "two colored points in correspondence”.



COLORED MODEL: PARTICULAR CASES

(a) Only one color: P(c) = 1.
All possible joint distributions of X, Y') are "permitted”.
This situation is equivalent to the one of the non colored rhode

(b) Almost surely constant random variables
Ve € C) d(x,y) such that Prob(X = z|c) = 1andProb(Y =ylc) =1

Thus it exists only one possible joint distributi®i.

There are two sets of "colored points” (common set of colors).
In each set of points, not two points have the same color.
There is a bijection between these two sets: the points drevise associated.

The two sets have the same cardinality, but this latter maynite or not.

We are now able to define the "pairwise correspondence”, even fanfinite sets.
The most general form of this "pairwise correspondence” is a jont distribution.




THE COLORED WASSERSTEIN DISTANCE

We define theolored Wasserstein distancé,. between distributions of colored mixturasandY’.
P, andP,: respective distributions of andY’

W joint distribution of (X, V') with fixed marginalsP, andP,

W,... set of all joint distributiongV’

de /
DAP,,P,) < InfarewyE(X =YY (X —Y)

(can be generalized to colordd Wasserstein distancesc N*)

W, is not empty but NOT all joint distributions betweéhandY are possible,
because in generd andY cannot be independant.

WhenC' contains only one color, the colored Wasserstein distandeisigual Wasserstein distance
(i.e. no color) betweerX andY’, as encountered in the Monge-Kantorovitch transportation pmoble
for a quadratic cost.

W, is a subset of the the set of all joint distributions betwa&eandY
which is used to define the usual Wasserstein distance.



Case where bothP, and P, are discrete and finite withn equiprobable values (samples)

W is represented by a square matrix that we denote al3& byl being bistochastic.

i=n j=n

DX(Py, Py) = Mingyy > > Wiz — y;) (zi — y;)

i=1 j=1

Standard linear programme: the $&t'} is convex, closed, and bounded.
The lower bound is reached for one or several joint distributidhs: P/n,
whereP is a permutation matrix.

Let p be the permutation of orderassociated t@ .
For a fixedp, each point:; is bijectively associated to the point, with j = p(i): P, ; = 6; ;)

D?(P,,P,) = +Mingpy ;(w — o)) (T — Ypi))

For each of the! pairwise correspondences betweensim@intsz; and then pointsy,;,
we calculate the sum of thesquared distances (or their quadratic mean),
then we search the pairwise correspondence(s) minimizing this su



Case of twocoloredsamples of sizen

Two sets ofn points pairwise associateds colors).

There is only one joint distribution, i.e. only one permutatmatrix P = nWW/

D2 =

3|~

;(%’ — Ypi)) (Ti = Yp(s))

vnD. is the Frobenius norm of the difference between the array of thed the array of thg, ;).

More general case for twocoloredsamples of size:

Each of the two sets of points is partitioned inté& subsets, of sizes,, no, ..., ny.
The correspondence is free for each pair of subsets associatedltr.a

1=k
There are [[ n;! permutations to enumerate to fihd

1=1



FORMAL LINK BETWEEN WASSERSTEIN METRIC AND LEAST SQUARES ME THODS

The problem of the optimal superposition of two sets qoints:

The sum of the: squared distances BIINIMIZED for a class of transformations of the second set
(usual transformations: affine, orthogonal, rotation and trainslag¢tc...)

e Procrustesmethods under free correspondence, encountered in descripiigtics.

e RMS or RMSD (Root Mean Square Deviation) method under free correspondence:
they are encountered in chemistry and structural biology in the chisometries ifR*.

In the case of a free correspondence, the Procrustes distance and
the RMS distance are MINIMIZED L? Wasserstein distances.

In the case of a fixed correspondence, the Procrustes distance and
the RMS distance are MINIMIZED L? colored Wasserstein distances.

Fixed correspondencéhese methods were many times rediscovered in sciences,
and are by far more used than the free correspondence ones.




SOME OPTIMIZATION RESULTS FOR PROCRUSTES PROBLEMS

Analytical results on the optimal joint distributidir * exist ford = 1 in the non colored case:
see the solution of the Monge-Kantorovitch transportation molbbr a quadratic cost.

Assuming that som#&’/ is fixed we look for the optimal Procrustes transformations.

e Optimal translatiort*: itis such thatFY = FX, i.e.t* =0whenEX = EY =0

e Optimal affine transformation®(XY”) - [E(YY")|"!

e Optimal orthogonal transformatiof 1’
U is the orthonormal matrix of eigenvectors B{ XY')E(Y X')
V is the associated orthonormal matrix of eigenvectorE @f X') E(XY”)

Remark: in the discrete and finite case, this solution usingitigular values decomposition was
known since more than one half century. It was rediscovered mam@stialthough it was
often erroneously proposed as a solution for the optimal rotation.



Optimal rotations

o N o |10 10 =1
ed=2 R =cos(r’) - I +sin(r) -1, [[01]’ HLO]

cos(r*) = E(X'Y) /€, sin(r*) = E(X'TY) /&
E=[(BEX'Y))?+(EX'TY))*)?, D?=EXX)+EY'Y)-2E

e d = 3: the optimal quaternion® is the unit eigenvector of the largest eigenvaludsof
0 | E(Y AX)

EYANX) (Z+2Z)-Tr(Z+2")-1)]

Z =EYX'), D** = D3 — 2¢*' Bq*, D:=EX-Y)(X-Y)

B = I is the identity matrix,

Remark:D? and the elements df(X A Y') are linear combinations of the elements/pof

e d > 3. itis an open problem.



THE CHIRAL INDEX: DEFINITION
X and X are colored mixtures. The distribution &f is a mirror image of the distribution of,
this image being submitted to an arbitrary rotati®and translation.
W is a joint distribution of X, Y).
The inertial” of X or X, i.e. the trace of the variance matrix, is assumed to be finiteahdull.

The chiral index is the colored Wasserstein distance betweedistributions ofX and.X,
minimized for all rotationg? and translations, and divided bylT'/d.

Definition: x dif LinfarenEX - X)(X - X)

e y depends only on the distribution &f.

e \ takes value ino; 1.

e Y IS insensitive to translation, rotation, mirror inversion, aodlisg.
e Y =0« X isachiral.

o v =1=V =0¢%] (the variance matri¥ is proportional to the identity matrix)



BUILDING CHRALITY MEASURES: A TEST SET
THREE NON COLORED POINTS ON THE REAL LINE

M) M) M)
/ / /

_ (-
X~ flratad)

« . ratio of the lengths of the two adjacent segments.

In the simplest case (above), a safe chirality measure shouléigatis

e y is a function ofo and ONLY of«, the unique parameter of the set
(invariance through isometries).

e x(1) =0 (the setis achirak- x is null).

ex=0=a=1 (xisnull= the setis achiral).

e \ IS a continuous function af.

e x(a) = x(1/a) (invariance through scaling).

Many scientists defined chirality measures, but most faileshtsfy the properties above.



FINITE SETS OF EQUALLY WEIGHTED POINTS

Set ofn points, z1, ...,z, inR? colored or not: X =

C Z=(I-1-1/n)-X

1 is a vector of n components, all equaltg and (I — 1 -1'/n) is the centering operator.
ThusEZ =0, the covariance matrix i® = Z'Z/n, andT = Tr(V).

Q : user arbitrary fixed orthogonal matrix R with det(Q) = —1.

R : unknown rotation matrix of ordet.

P : unknown permutation matrix of order, acting on the lines ok (or 2).

X = & MingppyTr(Z — PZQ'R)(Z — PZQ'R')/n

Remark: the points have weightgn, so that the inertid’ is indeedl'r(Z'Z/n), notTr(Z' 7).

The chiral (or achiral) object associated toX is the class of equivalence
of the matrices deduced fromX by the lines permutations
" permitted by the colors of the points.



CHIRALITY AND MOLECULAR GRAPHS

Same formula than for finite sets of colored points:

X = & MingppyTr(Z — PZQ'R)(Z — PZQ'R))/n

...except that the permutatio’sare those associated to the molecular graph automorphisms.

This set of automorphisms depends not only on the colors ofdbes)
but also on the color of the edges and of the full graph
(assumed to be simple and undirected, connected, with no toopedes)

Reminder: the nodes are the atoms and the edges are the cheonmidal b

e The water molecule H-O-H has 3 nodes and 2 edges.
Its graph has 2 automorphismg= 0 (planar molecule).

e Methane CH: there are 24 automorphisms.
The carbon atom lies at the center of a regular tetrahedron vétHi ths verticesy = 0.

e Br-CHF-CI has 5 nodes with all different colors, and 4 edges wighsdime color.
There is only one automorphism, corresponding’te: 1.
Assuming that the carbon atom lies at the center of a requlahtsdron, = 1.



WHAT ABOUT DIRECT SYMMETRY MEASURES ?

For clarity, we assume that the colored mixtufas of null expectation.

Starting from the expression of the chiral index:%In fiyrnE(X —Y)(X —Y)
then requiringY” to have the the same distribution th&nthrough an arbitrary direct isometry...

...we would get an index always equalto

E.g., when the arbitrary direct isometry is the identity,

justsetR = I,t = 0, andW such that*W (z,y) = dF(x) - 0, dy,
whereF' is the distribution function o,

andé[y = z] is the Dirac delta function of € R at the pointy = z.

How to solve that problem ?

e RemovingRk = I andt = 0 from the set of unknown isometries fails: the lower bound is anged!

e Removing the optimall’ fails, except in the finite case: just set#£ 1.

That solution is implemented in the QCM freeware: it compytesd the direct symmetry index DSI
for molecular graphs. The normalizing factor for DSI#" in any dimension.

e Other solution: define a direct symmetry measure for a finite suipgobdirect isometries.



MAXIMAL CHIRALITY SETS AND MOLECULAR GRAPHS

We know that: y =1 = V = ¢°1.

In the case where there is only one possible joint distributioXofX'), x = do3/T
(03 is the smaller eigenvalue f)

It is the case for equally weighted colored points, not two of them having thaeaolor.
Under the "all different colors” assumption, the set of the wediof the regulad-simplex,
the set of the vertices of thecube, etc., are maximal chirality setg; = 1,

...although we would havey = 0 if the colors were discarded !

Maximal chirality molecular graphs:

Br-CHF-CI, assuming that C is at the center of a regular tetramethiassy = 1.

Remarks:

e Chirality in chemistry is a complex concept involving dynamrioperties and deformability.
The present framework either assumes rigidity, or applies to d Ggaformation of the molecule.
e An efficient enumeration of molecular graphs automorphismsjsired.



Two views of the [6.6]chiralane, &£Hog, in configuration S.
This chiral and symmetric molecule is rigid. It was designed béhwartz in 2004.

The full molecular graph has 768 automorphismg—= 0.9824
The hydrogen suppressed graph (only carbons) has 12 automorphisead.0000



MAXIMAL CHIRALITY THREE POINTS SETS IN THE PLANE

(A) All non-equivalent verticesy = 1, reached for the equialteral triangle.
This result generalizes in any dimension:
the most chiral simplex with all non-equivalent vertices is tagu

(B) Two equivalent vertices. ~ Distances ratig:l — V6/4:1:4/1+6/4;,  x=1-+2/2

(C) Three equivalent vertices. Distances ratio:/4 + /15 : \/(5 +/15)/2; x =1-2v5/5

N

(B) (C)




LEAST DIRECT SYMMETRIC THREE POINTS SETS IN THE PLANE

(D) All non-equivalent vertices:direct symmetry is impossible because we s&t +# I.

(E) Two equivalent vertices. Abscissas:1 — v/3)/2, (—1++/3)/2,1 (aligned points)
DSI =1, true Vd > 2

(F) Three equivalent vertices. Angles{4,w/8,57/8; DSI =1—+/2/2

o O @

(E) (F)

Geometric property of the five extremal triangles (A), (B), (C), and (E), (F)

The squared lengths of the sides are equal to three times theedglistances vertex-barycenter.

2 2 2

, H$3—$1H2:3H$3 ) $1+$2+$3:0

, e — 22l = 3|,

|2 — x3]|* = 3|2y

CARE: The relation is symmetric for two points only.



CONTINUITY, CONVERGENCE

We would be happy with something likésimilar” objects =- "close” chiral indices

e In the finite discrete case, with colors and/or graphs,
Y IS a continuous function of the coordinates ..., z,,.

e In the case of colored mixtures, when there is only one color (owalgntly, no color at all):

Convergence theorem
P,, is the distribution of the random vectaf,
P is the distribution of the random vectdt, of inertia™'.
If the sequencéP,,) of probability distributions converge 18,
andE[X! X, ] — E[X'X] < oo, andT > 0, theny(P,) — x(P).

Remark:
Weaker is the convergence criteria in the space of objecttrisnger is the convergence theorem.
The convergence in distribution (i.e. in law) is the weakasialiconvergence encountered for r.v.

Particular situation of interest. sequence of samples.
The chiral index of a parent distribution can be estimated frothe sample chiral index.
The upper bound of for a class of distributions can be seeked from samples of inoigpa&es.



THE CHIRAL INDEX AS AN ASYMETRY COEFFICIENT FOR DISTRIBUTIO NS
(NO COLOR)

e Achiral distribution=- null Pearson’s skewness BUT RECIPROCITY FALSE
e Achiral distribution=- null chiral index AND RECIPROCITY IS TRUE

e Null chiral index=> achiral distribution

od=1: X:(l—i—]nf{W}T)/Q

W is the joint distribution of X, X5), X; and X, beingidentically distributed

r is the correlation coefficient betweén andX, (x <1/2 becauselnfgyyr < 0)

Sample of sizex: the minimal correlation is reached when the observations soriadreasing values
are correlated with the observations sorted in decreasing valwgssy with a pocket calculator

x from embedded interval midranges and lengths of the order statist,, 2 = 1, ..., n:

=n 1=n

X = [ (=) — - 2%/ (ns?) X =1- [ (F=5=2)7/ (ns?)

i=1 =1

Open problem: build symmetry tests for some class of thenpdrstribution (normal, uniform, etc.),
find the asymptotic distribution af, or of a simple function of,, so that we can use standard tables.



DISTRIBUTIONS OF RANDOM VECTORS: SOME RESULTS ON THE CHIRAL INDEX
X; and.X; are identically distributed. For clarityy X; = EX, = 0.

d=1. x= 1+ Infur)/2 Upper bound of the chiral indexy,, = 1/2
Upper bound asymptotically reached by the Bernouili law of peater tending to or to 1.

d=2. x=1—Supgyy|m —ml/T  m,n: eigenvalues ofZ (X, Xj + X, X7)/2
or: x = 1 — Supgwy|Ez120| /T 21, Zo. complex r.v. associated respectivelyXe and X,
Xm € [1 —1/m;1—1/27]

Sample of size,, matrix X (n lines,2 columns), centeredl(X = 0), permutation matrix°.
X =1—Mazpy|m —no|/T m,mo: eigenvalues of X'(P 4 P') X/2n

or: x =1 — Maxipm|2'Pz|/||z]? 2€C", z#0, I'z2=0
Theorem: The optimal permutation is symmetric (true with the colored nhémled < 2).

d>3" xm€|[1/2;1]
d = 3. The optimal Procrustes rotation is known.



SOME OPEN PROBLEMS

e No color: ford > 2, find y,, and characterize the associated distributions.
e No color: can the upper boungd, be reached, or is it only asymptotical ?
e No color: doesV = ¢?I characterizes (asymptotically) maximal chirality distribugd?

o Ford =2:find Infy..1.—nMaxgpy |2 Pz|/| |
then use the stochastic convergence theorem tg,get
Adding the assumption:’z = 0 (i.e. V proportional tol), we get x < 1 —2/3x
We know a family of samples witl arbitrarily close tol — 1/ (it is so thatz'z tends to))
Conjecture: ford =2, x,=1—1/=w

e Ford > 3: find the optimal Procrustes rotation.

¢ With or without color: given a chiral distribution, can we defiteeclosest achiral distribution ?
(some sufficient conditions are known in the finite discrete }case

e Translational symmetry, infinite mass: the colored mixturesehtadls (lattices, helices, etc.)



Family of sets conjectured to be asymptotically of maximal chiraliy: Lim Sup (x\) =1 —1/=x

_ _ block 2 multiplicity
Fix e > 0 then choose even integer > 1/e. 0 | 1
Select an integer > m*/e?>  then 5 W/ 2
select an even integerk > r™~1 /e : : :
z€C" ; zhas m+3 blocks of elements. . 1 if ;

- NI J w! /1 rl
Each blockj, j = 0..m + 2, contains identical elements. : :

_ 2 m—1 k k ) ) )
n—iz—:ﬂ:i-r +...+T +k+35+735 m — 1 wm—l/r(m—l)/Q pm—1
S= 3 wiri? m —S/k k

J=0 m+ 1 iS/k k/2
: 1 _ I
z Issuchthat 2’1 =0 and 2'z=0 42 —iS/k k2




e=0.750 e= 0.500 e= 0.250
m=2:m+3=5:r=29 m=4:m+3=7:r=1025 m=6:m+3=9:r=20737
k =0.400E+02 : n=0.110E+03k = 0.215E+10 : n = 0.539E+10k = 0.153E+23 : n = 0.345E+23

e= 0.250 ; deleted block: O ; scaling: 144 e= 0.250 ; deleted blocks: 0,1 ; scaling: 20737
Mm=6;,m+3=9;r=20737 Mm=6;,m+3=9;r=20737
k =0.153E+23 ; n = 0.345E+23 k=0.153E+23 ; n = 0.345E+23



