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WHAT IS CHIRALITY ?

I call any geometrical figure, or group of points,chiral, and say that it haschirality
if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.

Lord Kelvin, 1904

Isometry: conservation of distances: combination of translations, rotations, and mirror inversions.

Direct isometry: only translations and rotations.

Indirect isometry : translations and rotations combined with anODD number of mirror inversions.

Achirality : an achiral object is identical to one of its images through an indirect isometry.

Chirality : an object which is not achiral is chiral.

Chirality measure: quantitative measure of the deviation from achirality.

Remark 1: the full definitions of symmetry and chirality are more complex (group theory).

Remark 2: despite a common belief, the orientability of space isNOT required to define chirality.



PROBLEM

EUCLIDEAN SYMMETRY AND CHIRALITY ARE NOT STRICTLY GEOMETRI C CONCEPTS

(A) (B)

The cube (A) is NOT symmetric; the cube (B) has a C2 rotation axis; bothare CHIRAL

A mechanism to associate points is needed.

We built it in a general framework, not necessarily involvingsymmetry or chirality.



MOLECULAR GRAPHS

• Molecular graphs are realized inR3.
• The nodes are the atoms and the edges are the chemical bonds.
• Molecular graphs are simple, undirected, no loops on nodes.
• Nodes are labelled with colors: atom type (atomic symbol), atomic mass, charge etc.
• Edges are labelled with colors: chemical bond type.
• In general, molecular graphs are not connected: the connex components are treated separately.

Some examples of molecular graphs:

The water molecule H-O-H has 3 nodes and 2 edges. Its graph has 2 automorphisms.

Br-CHF-Cl has 5 nodes with all different colors, and 4 edges with the same color.
There is only one automorphism.

The molecular graph of the cyclohexane ring C6 has 12 automorphisms, not 6! automorphisms.



MEASURING THE ASYMMETRY OF DISTRIBUTIONS

Symmetric (i.e.achiral) distributions: binomial of parameter1/2, Gauss, etc.

Asymmetric (i.e.chiral ) distributions: exponential, Poisson, etc.

Remark: for univariate distributions, there isNO direct symmetry.

X is a random variable of expectationµ and varianceσ2

Coefficient of asymmetry: e.g. Pearson’s skewness (1895):E
(

X−µ
σ

)3

But: it exists asymmetric distributions with null skewness !

We need an asymmetry coefficient for multivariate distributions
which takes the value0 if and only if the distribution isindirect symmetric.

We must handle colors, molecular graphs, and multivariate distributions.



We first need a method able to fix a pairwise correspondence (permutation) in the discrete case,
while able to operate in the continuous case (fix a bijection).

CLASSICAL MIXTURES OF DISTRIBUTIONS

A mixture distribution function is a convex linear combinationof distribution functions.

The coefficients of the convex linear combination are the probabilities associated to
the mixing distribution. This latter is usually discrete and finite.

The mixed distributions (calledcomponents) are usually those of random vectors taking values inR
d.

These components should not be confused with thed components of some vector ofR
d.

We are going to do an unusual presentation of mixtures of distributions.



COLORED MIXTURES

We consider a two steps process:
(1) Pick a ”color”
(2) Thed-variate distribution is determined by the choice of the color

Measurable space(C × R
d, A ⊗ B):

C: space of colors, not empty. Examples:C = R; C = { red, green, blue}.
A: σ-algebra onC
B: Borelσ-algebra onRd

K is a random variable defined on the probability space(C, A, P ),
P is the probability distribution ofK.

To each colorc ∈ C we associate a probability distributioñPc of R
d

via the functionΦ : c 7→ P̃c = Φ(c).

The value of the distribution function of̃Pc at the pointx is a conditional probability noted̃F (x|c).

We consider the random variable(K, X), X being a random vector taking values inR
d.

X is called acolored mixturewhen its distribution functionF is: F (x) =
∫

c∈C

F̃ (x|c)P (dc)



COUPLES OF COLORED MIXTURES

Now we consider the couple of random variables((Kx, X), (Ky, Y )),
whereX andY are colored mixtures.

Pxy : joint probability distribution of(Kx, Ky)

W̃ : conditional joint distribution function associated to(Φx, Φy); in general,Φx 6= Φy

The joint distribution functionW of the couple(X, Y ) is got by integration:

W (x, y) =
∫

cx∈C

∫

cy∈C

W̃ (x, y|cx, cy)Pxy(dcx, dcy)

Nothing new until now about mixtures and couples of mixtures,
except that we bother with a slightly complicated presentation.



THE COLORED MIXTURES MODEL:
HANDLING THE CONSTRAINTS ON CORRESPONDENCES

Additional assumption Kx
a.s.
= Ky

Consequences:

Pxy(dcx, dcy) = P (dcx)δ[cx=cy]dcy (δ is the Dirac function)

W (x, y) =
∫

c∈C

W̃ (x, y|c)P (dc) (P is the marginal ofPxy, i.e. the distribution ofKx or Ky).

The dependancy betweenKx andKy in the space of colors
induces a dependancy between the r.v.X andY .

In other words, with probability1 the two picked colors are the same, so that
thed-variate distributions associated resp. toX andY are ”constrained” to be selected together.

E.g., when these twod-variate distributions are those of a.s. constant random vectors,
we have put ”two colored points in correspondence”.



COLORED MODEL: PARTICULAR CASES

(a) Only one color: P (c) = 1.

All possible joint distributions of(X, Y ) are ”permitted”.

This situation is equivalent to the one of the non colored model.

(b) Almost surely constant random variables:

∀c ∈ C, ∃(x, y) such that Prob(X = x|c) = 1 andProb(Y = y|c) = 1

Thus it exists only one possible joint distributionW .

There are two sets of ”colored points” (common set of colors).

In each set of points, not two points have the same color.

There is a bijection between these two sets: the points are pairwise associated.

The two sets have the same cardinality, but this latter may befinite or not.

We are now able to define the ”pairwise correspondence”, even for infinite sets.
The most general form of this ”pairwise correspondence” is a joint distribution.



THE COLORED WASSERSTEIN DISTANCE

We define thecolored Wasserstein distanceDc between distributions of colored mixturesX andY .
Px andPy: respective distributions ofX andY

W : joint distribution of(X, Y ) with fixed marginalsPx andPy

Wc: set of all joint distributionsW

D2
c(Px,Py)

def
= Inf{W∈Wc}E(X − Y )′(X − Y )

(can be generalized to coloredLp Wasserstein distances,p ∈ N
∗)

Wc is not empty but NOT all joint distributions betweenX andY are possible,
because in generalX andY cannot be independant.

WhenC contains only one color, the colored Wasserstein distance is the usual Wasserstein distance
(i.e. no color) betweenX andY , as encountered in the Monge-Kantorovitch transportation problem
for a quadratic cost.

Wc is a subset of the the set of all joint distributions betweenX andY

which is used to define the usual Wasserstein distance.



Case where bothPx andPy are discrete and finite withn equiprobable values (samples)

W is represented by a square matrix that we denote also byW , nW being bistochastic.

D2
c(Px,Py) = Min{W}

i=n
∑

i=1

j=n
∑

j=1

Wi,j(xi − yj)
′(xi − yj)

Standard linear programme: the set{W} is convex, closed, and bounded.
The lower bound is reached for one or several joint distributionsW = P/n,
whereP is a permutation matrix.

Let p be the permutation of ordern associated toP .

For a fixedp, each pointxi is bijectively associated to the pointyj, with j = p(i): Pi,j = δi,p(i)

D2
c(Px,Py) = 1

nMin{P}
i=n
∑

i=1

(xi − yp(i))
′(xi − yp(i))

For each of then! pairwise correspondences between then pointsxi and then pointsyp(i),
we calculate the sum of then squared distances (or their quadratic mean),
then we search the pairwise correspondence(s) minimizing this sum.



Case of twocoloredsamples of sizen

Two sets ofn points pairwise associated (n colors):

There is only one joint distribution, i.e. only one permutationmatrixP = nW

D2
c = 1

n

i=n
∑

i=1

(xi − yp(i))
′(xi − yp(i))

√
nDc is the Frobenius norm of the difference between the array of thexi and the array of theyp(i).

More general case for twocoloredsamples of sizen:

Each of the two sets ofn points is partitioned intok subsets, of sizesn1, n2, ..., nk.
The correspondence is free for each pair of subsets associated to acolor.

There are
i=k
∏

i=1

ni! permutations to enumerate to findD.



FORMAL LINK BETWEEN WASSERSTEIN METRIC AND LEAST SQUARES ME THODS

The problem of the optimal superposition of two sets ofn points:

The sum of then squared distances isMINIMIZED for a class of transformations of the second set
(usual transformations: affine, orthogonal, rotation and translation, etc...)

• Procrustesmethods under free correspondence, encountered in descriptive statistics.

• RMS or RMSD (Root Mean Square Deviation) method under free correspondence:
they are encountered in chemistry and structural biology in the case of isometries inR3.

In the case of a free correspondence, the Procrustes distance and
the RMS distance are MINIMIZED L2 Wasserstein distances.

In the case of a fixed correspondence, the Procrustes distance and
the RMS distance are MINIMIZED L2 colored Wasserstein distances.

Fixed correspondence: these methods were many times rediscovered in sciences,
and are by far more used than the free correspondence ones.



SOME OPTIMIZATION RESULTS FOR PROCRUSTES PROBLEMS

Analytical results on the optimal joint distributionW ∗ exist ford = 1 in the non colored case:
see the solution of the Monge-Kantorovitch transportation problemfor a quadratic cost.

Assuming that someW is fixed we look for the optimal Procrustes transformations.

• Optimal translationt∗: it is such thatEY = EX, i.e. t∗ = 0 whenEX = EY = 0

• Optimal affine transformation:E(XY ′) · [E(Y Y ′)]−1

• Optimal orthogonal transformation:UV ′

U is the orthonormal matrix of eigenvectors ofE(XY ′)E(Y X ′)
V is the associated orthonormal matrix of eigenvectors ofE(Y X ′)E(XY ′)

Remark: in the discrete and finite case, this solution using thesingular values decomposition was
known since more than one half century. It was rediscovered many times, although it was
often erroneously proposed as a solution for the optimal rotation.



Optimal rotations

• d = 2: R∗ = cos(r∗) · I + sin(r∗) · Π, I =

[

1 0

0 1

]

, Π =

[

0 −1

1 0

]

cos(r∗) = E(X ′Y )/E , sin(r∗) = E(X ′ΠY )/E
E = [(E(X ′Y ))2 + (E(X ′ΠY ))2]1/2, D∗2 = E(X ′X) + E(Y ′Y ) − 2E

• d = 3: the optimal quaternionq∗ is the unit eigenvector of the largest eigenvalue ofB

B =

[

0 E(Y ∧ X)′

E(Y ∧ X) (Z + Z ′) − Tr(Z + Z ′) · I

]

, I is the identity matrix,

Z = E(Y X ′), D∗2 = D2
0 − 2q∗′Bq∗, D2

0 = E(X − Y )′(X − Y )

Remark:D2
0 and the elements ofE(X ∧ Y ) are linear combinations of the elements ofZ

• d > 3: it is an open problem.



THE CHIRAL INDEX: DEFINITION

X andX̄ are colored mixtures. The distribution of̄X is a mirror image of the distribution ofX,
this image being submitted to an arbitrary rotationR and translationt.

W is a joint distribution of(X, Y ).

The inertiaT of X or X̄, i.e. the trace of the variance matrix, is assumed to be finite andnot null.

The chiral index is the colored Wasserstein distance between the distributions ofX andX̄,
minimized for all rotationsR and translationst, and divided by4T/d.

Definition: χ
def
= d

4T Inf{W,R,t}E(X − X̄)′(X − X̄)

• χ depends only on the distribution ofX.
• χ takes value in[0; 1].
• χ is insensitive to translation, rotation, mirror inversion, and scaling.
• χ = 0 ⇔ X is achiral.
• χ = 1 ⇒ V = σ2I (the variance matrixV is proportional to the identity matrixI)



BUILDING CHRALITY MEASURES: A TEST SET

THREE NON COLORED POINTS ON THE REAL LINE

α : ratio of the lengths of the two adjacent segments. χ =
(1−α)2

4(1+α+α2)

In the simplest case (above), a safe chirality measure should satisfy to:

• χ is a function ofα and ONLY ofα, the unique parameter of the set
(invariance through isometries).

• χ(1) = 0 (the set is achiral⇒ χ is null).

• χ = 0 ⇒ α = 1 (χ is null⇒ the set is achiral).

• χ is a continuous function ofα.

• χ(α) = χ(1/α) (invariance through scaling).

Many scientists defined chirality measures, but most failed tosatisfy the properties above.



FINITE SETS OF EQUALLY WEIGHTED POINTS

Set ofn points, x1, ...,xn in R
d, colored or not: X =











x′
1

x′
2
...

x′
n











, Z = (I − 1 · 1′/n) · X

1 is a vector of n components, all equal to1, and (I − 1 · 1′/n) is the centering operator.
ThusEZ = 0, the covariance matrix isV = Z ′Z/n, andT = Tr(V ).

Q : user arbitrary fixed orthogonal matrix inRd with det(Q) = −1.
R : unknown rotation matrix of orderd.
P : unknown permutation matrix of ordern, acting on the lines ofX (or Z).

χ = d
4T Min{P,R}Tr(Z − PZQ′R′)′(Z − PZQ′R′)/n

Remark: the points have weights1/n, so that the inertiaT is indeedTr(Z ′Z/n), notTr(Z ′Z).

The chiral (or achiral) object associated toX is the class of equivalence
of the matrices deduced fromX by the lines permutations

” permitted” by the colors of the points.



CHIRALITY AND MOLECULAR GRAPHS

Same formula than for finite sets of colored points:

χ = d
4T Min{P,R}Tr(Z − PZQ′R′)′(Z − PZQ′R′)/n

...except that the permutationsP are those associated to the molecular graph automorphisms.

This set of automorphisms depends not only on the colors of the nodes,
but also on the color of the edges and of the full graph
(assumed to be simple and undirected, connected, with no loopson nodes)

Reminder: the nodes are the atoms and the edges are the chemical bonds.

• The water molecule H-O-H has 3 nodes and 2 edges.
Its graph has 2 automorphisms.χ = 0 (planar molecule).

• Methane CH4: there are 24 automorphisms.
The carbon atom lies at the center of a regular tetrahedron with the H as vertices:χ = 0.

• Br-CHF-Cl has 5 nodes with all different colors, and 4 edges with the same color.
There is only one automorphism, corresponding toP = I.
Assuming that the carbon atom lies at the center of a regular tetrahedron,χ = 1.



WHAT ABOUT DIRECT SYMMETRY MEASURES ?

For clarity, we assume that the colored mixtureX is of null expectation.

Starting from the expression of the chiral index:d4T Inf{W,R,t}E(X − Y )′(X − Y )

then requiringY to have the the same distribution thanX through an arbitrary direct isometry...

...we would get an index always equal to0.

E.g., when the arbitrary direct isometry is the identity,
just setR = I, t = 0, andW such thatd2W (x, y) = dF (x) · δ[y=x]dy,
whereF is the distribution function ofX,
andδ[y = x] is the Dirac delta function ofy ∈ R

d at the pointy = x.

How to solve that problem ?

• RemovingR = I andt = 0 from the set of unknown isometries fails: the lower bound is unchanged!

• Removing the optimalW fails, except in the finite case: just setP 6= I.

That solution is implemented in the QCM freeware: it computesχ and the direct symmetry index DSI
for molecular graphs. The normalizing factor for DSI is2T in any dimensiond.

• Other solution: define a direct symmetry measure for a finite subgroup of direct isometries.



MAXIMAL CHIRALITY SETS AND MOLECULAR GRAPHS

We know that: χ = 1 ⇒ V = σ2I.

In the case where there is only one possible joint distribution of(X, X̄), χ = dσ2
d/T

(σ2
d is the smaller eigenvalue ofV )

It is the case forn equally weighted colored points, not two of them having the same color.

Under the ”all different colors” assumption, the set of the vertices of the regulard-simplex,
the set of the vertices of thed-cube, etc., are maximal chirality sets:χ = 1,

...although we would haveχ = 0 if the colors were discarded !

Maximal chirality molecular graphs :

Br-CHF-Cl, assuming that C is at the center of a regular tetrahedron, hasχ = 1.

Remarks:
• Chirality in chemistry is a complex concept involving dynamicproperties and deformability.

The present framework either assumes rigidity, or applies to a fixed conformation of the molecule.
• An efficient enumeration of molecular graphs automorphisms is required.



Two views of the [6.6]chiralane, C27H28, in configuration S.

This chiral and symmetric molecule is rigid. It was designed by A.Schwartz in 2004.

The full molecular graph has 768 automorphisms.χ = 0.9824

The hydrogen suppressed graph (only carbons) has 12 automorphisms. χ = 1.0000



MAXIMAL CHIRALITY THREE POINTS SETS IN THE PLANE

(A) All non-equivalent vertices:χ = 1, reached for the equialteral triangle.
This result generalizes in any dimension:
the most chiral simplex with all non-equivalent vertices is regular.

(B) Two equivalent vertices. Distances ratio:
√

1 −
√

6/4 : 1 :
√

1 +
√

6/4; χ = 1 −
√

2/2

(C) Three equivalent vertices. Distances ratio:1 :
√

4 +
√

15 :
√

(5 +
√

15)/2; χ = 1− 2
√

5/5

(A) (B) (C)



LEAST DIRECT SYMMETRIC THREE POINTS SETS IN THE PLANE

(D) All non-equivalent vertices:direct symmetry is impossible because we setP 6= I.

(E) Two equivalent vertices. Abscissas:(−1 −
√

3)/2, (−1 +
√

3)/2, 1 (aligned points)
DSI = 1, true ∀d ≥ 2

(F) Three equivalent vertices. Angles:π/4, π/8, 5π/8; DSI = 1 −
√

2/2

(E) (F)

Geometric property of the five extremal triangles (A), (B), (C), and (E), (F):

The squared lengths of the sides are equal to three times the squared distances vertex-barycenter.

‖x2 − x3‖2 = 3‖x1‖2, ‖x1 − x2‖2 = 3‖x2‖2, ‖x3 − x1‖2 = 3‖x3‖2, x1 + x2 + x3 = 0

CARE: The relation is symmetric for two points only.



CONTINUITY, CONVERGENCE

We would be happy with something like:”similar” objects ⇒ ”close” chiral indices

• In the finite discrete case, with colors and/or graphs,
χ is a continuous function of the coordinatesx1, ...,xn.

• In the case of colored mixtures, when there is only one color (or equivalently, no color at all):

Convergence theorem:
Pn is the distribution of the random vectorXn

P is the distribution of the random vectorX, of inertiaT .
If the sequence(Pn) of probability distributions converge toP,
andE[X ′

nXn] → E[X ′X ] < ∞, andT > 0, thenχ(Pn) → χ(P).

Remark:
Weaker is the convergence criteria in the space of objects is, stronger is the convergence theorem.
The convergence in distribution (i.e. in law) is the weakest usual convergence encountered for r.v.

Particular situation of interest: sequence of samples.
The chiral index of a parent distribution can be estimated from the sample chiral index.
The upper bound ofχ for a class of distributions can be seeked from samples of increasing sizes.



THE CHIRAL INDEX AS AN ASYMETRY COEFFICIENT FOR DISTRIBUTIO NS
(NO COLOR)

• Achiral distribution⇒ null Pearson’s skewness BUT RECIPROCITY FALSE

• Achiral distribution⇒ null chiral index AND RECIPROCITY IS TRUE
• Null chiral index⇒ achiral distribution

• d = 1 : χ = (1 + Inf{W}r)/2

W is the joint distribution of(X1, X2), X1 andX2 beingidentically distributed

r is the correlation coefficient betweenX1 andX2 (χ ≤ 1/2 becauseInf{W}r ≤ 0)

Sample of sizen: the minimal correlation is reached when the observations sortedin increasing values
are correlated with the observations sorted in decreasing values:easy with a pocket calculator

χ from embedded interval midranges and lengths of the order statisticsxi:n, i = 1, ..., n:

χ = [
i=n
∑

i=1

(
xi:n+xn+1−i:n

2 )2 − n · x̄2]/(ns2) χ = 1 − [
i=n
∑

i=1

(
xi:n−xn+1−i:n

2 )2]/(ns2)

Open problem: build symmetry tests for some class of the parent distribution (normal, uniform, etc.),
find the asymptotic distribution ofχn or of a simple function ofχn so that we can use standard tables.



DISTRIBUTIONS OF RANDOM VECTORS: SOME RESULTS ON THE CHIRAL INDEX

X1 andX2 are identically distributed. For clarity,EX1 = EX2 = 0.

d = 1: χ = (1 + Inf{W}r)/2 Upper bound of the chiral index:χm = 1/2

Upper bound asymptotically reached by the Bernouili law of parameter tending to0 or to1.

d = 2: χ = 1 − Sup{W}|η1 − η2|/T η1, η2: eigenvalues ofE(X1X
′
2 + X2X

′
1)/2

or: χ = 1 − Sup{W}|Ez1z2|/T z1, z2: complex r.v. associated respectively toX1 andX2

χm ∈ [1 − 1/π; 1 − 1/2π]

Sample of sizen, matrixX (n lines,2 columns), centered (1′X = 0), permutation matrixP .

χ = 1 − Max{P}|η1 − η2|/T η1, η2: eigenvalues ofX ′(P + P ′)X/2n

or: χ = 1 − Max{P}|z′Pz|/‖z‖2 z ∈ C
n, z 6= 0, 1

′z = 0

Theorem: The optimal permutation is symmetric (true with the colored model for d ≤ 2).

d ≥ 3: χm ∈ [1/2; 1]

d = 3: The optimal Procrustes rotation is known.



SOME OPEN PROBLEMS

• No color: ford ≥ 2, find χm and characterize the associated distributions.

• No color: can the upper boundχm be reached, or is it only asymptotical ?

• No color: doesV = σ2I characterizes (asymptotically) maximal chirality distributions ?

• Ford = 2: find Inf{z 6=0,1′z=0}Max{P}|z′Pz|/‖z‖2

then use the stochastic convergence theorem to getχm

Adding the assumptionz′z = 0 (i.e. V proportional toI), we get χ ≤ 1 − 2/3π

We know a family of samples withχ arbitrarily close to1 − 1/π (it is so thatz′z tends to0)

Conjecture: for d = 2, χm = 1 − 1/π

• Ford > 3: find the optimal Procrustes rotation.

• With or without color: given a chiral distribution, can we defineits closest achiral distribution ?
(some sufficient conditions are known in the finite discrete case)

• Translational symmetry, infinite mass: the colored mixtures model fails (lattices, helices, etc.)



Family of sets conjectured to be asymptotically of maximal chirality: Lim Sup (χ) = 1 − 1/π

Fix ǫ > 0 then choose even integerm > 1/ǫ.
ω = e(2π)i/(2m) (ω2m = 1)

Select an integerr > m4/ǫ2 then
select an even integerk > rm−1/ǫ

z ∈ Cn ; z has m + 3 blocks of elements.
Each blockj, j = 0..m + 2, contains identical elements.
n = 1 + r + r2 + . . . + rm−1 + k + k

2 + k
2

S =
j=m−1
∑

j=0

ωjrj/2

z is such that z′1 = 0 and z′z = 0

block zj multiplicity

0 1 1

1 ω/r1/2 r

2 ω2/r r2

... ... ...
j ωj/rj/2 rj

... ... ...
m − 1 ωm−1/r(m−1)/2 rm−1

m −S/k k

m + 1 iS/k k/2

m + 2 −iS/k k/2



0 0 0

ǫ= 0.750
m = 2 ; m+3 = 5 ; r = 29
k = 0.400E+02 ; n = 0.110E+03

ǫ= 0.500
m = 4 ; m+3 = 7 ; r = 1025
k = 0.215E+10 ; n = 0.539E+10

ǫ= 0.250
m = 6 ; m+3 = 9 ; r = 20737
k = 0.153E+23 ; n = 0.345E+23

1

2

ǫ= 0.250 ; deleted block: 0 ; scaling: 144
m = 6 ; m+3 = 9 ; r = 20737
k = 0.153E+23 ; n = 0.345E+23

ǫ= 0.250 ; deleted blocks: 0,1 ; scaling: 20737
m = 6 ; m+3 = 9 ; r = 20737
k = 0.153E+23 ; n = 0.345E+23


