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MULTIVARIATE DISTRIBUTIONS



PHYSICAL SYSTEMS

Some symmetric physical systems having degenerated energy
levels and offering a continuous separation of its energgle
induced by, or inducing a symmetry breaking, may be such that

symmetry could itself offer continuous variations.

We must treat symmetry as a measurable quantity.

SYMMETRY // SKEWNESS // CHIRALITY

SKEWNESS degree of asymmetry of a distribution

Asymmetry coefficients exist:
therefore, symmetry is measurable !!

CHIRALITY : lack of mirror symmetry
May apply to objects and distributions having COLORS

Chirality is measurable, too.
In fact, an asymmetric univariate distribution is CHIRAL
(reflection through a point is related to indirect symmetry)

Geometric chirality measures are NOT related with physlicgalt-
matter interactions. However, optical rotatory power antglar
dichroism are revealed in chiral media.



THIS EQUILATERAL TRIANGLE IS CHIRAL ...
... [IFWE CAN SEE THE COLORS AT THE VERTICES.

IF WE CAN'T, IT IS ACHIRAL.



GENERAL THEORY. Partl: COLORED MIXTURES

Colors cannot be handled in the euclidean space

1. We consider a probability space (C, A, P)

C'. space of colors (e.d.' = {red, green, blue})
It is possible to have an infinite number of colors.

A: o-algebra defined o6&

P: a probability measure ofC, A)

2. We consider the measurable spacéC x R, A ® B)
B: Borel o-algebra ofR?

3. We define a mappingd from C on (R?, B):
To each color is associated d-variate distribution”. = ®(c).
The value of the distribution function d@f. atx € R%is F(x|c)

4. We consider a random variable( K, X)) taking values in
(C x R, A® B), with marginal distribution function F in R¢
such that:
F(z)= [ F(z|c)P(dc)
ceC
X Is called a colored mixture,
and its distribution?" is a colored mixture of distributions.

When K is a.s. constant, it is equivalent to consider that there is
only one color inC', and there is no essential difference between
X and an ordinary random vector.



GENERAL THEORY. Partll: THE COLORED MIXTURE MODEL

We consider two random variables( K, X;) and (K5, X5)
on (C x R, A® B), X; and X, being two colored mixtures.

Joint distribution of (K, Ks):  Pio

We have a couple of mapping$®,, ), thus for each couple of
colors(cy, c2) we have a couple ofi-variate distributions:

(plcla }5202) = (D1(c1), Da(c2))

Joint distribution of (P, P».,): W
Joint distribution function of (X7, X5):

Wz, 29) = [ [ Wz, zaler, o) Pra(dey, dey)

c1€C el

ADDITIONAL ASSUMPTION: K; = K,

It means that: P12(dcl, dCQ) = P(dCl)(S[CQ:Cl]dCQ
(6 is the Dirac-Delta function)

and then: W(ﬂ?l,l’g) = f W($1,$2|C)P(d6)
ceC



EXAMPLE 1

C' = {red, }
K, Ky: Pr(red) =1/2, Pr( )=1/2
In this example we consider a.s. constant random vectors.

Colored mixtureX; (a; andb; are distinct constants iR?):
}51,,,@(1: Pr(X; = ai|red) =1
PF(Xl = b1’ ) =1
Distribution Ole: Pl”(Xl = al) = PF(Xl = bl) = 1/2

Colored mixtureX, (a» andb, are distinct constants iRY):
]527,,4861: Pr(Xs = as|red) =1
PF(XQ = bg’ ) =1
Distribution of X5:  Pr(Xs = as) = Pr(Xs =by) = 1/2

We have a two-step process:
(1) We getonecolor ¢ from K; = K,
(2) We get the distribution®,,. and P,, from ¢:
Py g and Py, whenc = red
and whenc =

In general, the colored mixtures CANNOT be independant.
The set of joint distributions of X; and X, is constrained by
the link in the space of colors.

Here, there is only one possible distribution &f;, X5):
Pl”(Xl = CL1,X2 = CLQ) = 1/2
Pl”(Xl = bl,Xg = bg) = 1/2
Pl"(Xl = al,Xg = bg) =0
Pl”(Xl = bl,XQ = CLQ) =0

X, and X, are not independant: they are correlated!



EXAMPLE 2 (generalizes example 1)

We assume:

(a) The mixing distribution of the colors is discrete andténi
there arek colors

(b) All mixed distributions are discrete and finite

(c) For each color, the two discrete marginals are disteithaver
an equal number of values (c =1, ...,k)

(d) For each color, the two discrete marginals are uniform

(e) The full marginalsX; and X, are uniformly distributed

c=k
Itis proved that (X, X5) has ][ n. possible joint distributions.

c=1

We have modelized the situation where two set pbints are each
partitioned intok groups ofn,. points,c = 1,.. ..k, each pair of
groups being associated to a color.

Each of these pairs of groups is such that the two subsets of
points offern.! possible pairwise correspondances.

1 correspondence— 1 joint distribution.
(permutation matrix) / n = joint distrib. probability matri x.

k = n colors: two groups of fidiscernable points or particles”
We have two groups of points pairwise associated.
(e.g.: regression in the plane: values are pairwise adsogia

k = 1color. two groups of rfiindiscernable points or particles”
We have two groups of points under free correspondence.
There aren! possible correspondances.



SIMILARITY STUDIES

Remark:
Measuring symmetry or chirality is measuring self-similarity

We need a distance between colored mixtures
l.e. we need a probability metric able to<< see>> the colors

TheL2-Wasserstein distances a probability metric between
distributions of random vectors
(appears in the Monge-Kantorovitch transportation pnab)ie

D2 = ]nf{W}E[(Xl — XQ)/ . (X1 — XQ)]
{W}: set of all joint distributions of X1, X5).

TheCOLORED L2-Wasserstein distancés a probability metric
between distributions d@OLORED MIXTURES :

D2 = ]nf{W}E[(Xl — XQ)/ . (X1 — XQ)]
{W}: set of all joint distributions of X1, X5).

Here {W} is a subset of all joint distributions of the couple of
random vector$ X, X,) when there are no colors.

Reminder: the link in the space of colors induces constsaint

{W} is shown to be not empty.



SIMILARITY STUDIES EXAMPLES

SAMPLES / LEAST SQUARES METHODS

- Procrustes methods:
optimal superposition of two groups afpoints in k.
under affine transformation, or isometry, or rotation, etc.

- RMS alignment/superposition (chemistry, biochemistry)
as above, but pure rotation only (most timefir)

The Procrustes and RMS distances are instances of
the coloredL?-Wasserstein distance.
(E.g.: case of dixed pairwise correspondence)

When there is only one color (or no color),
they are also instances of tHe-Wasserstein distance.
(case of dree pairwise correspondence)

The minimized distance is a distance between

classes of equivalence of distributions.

E.g., minimizing the distance for rotation means that wesaer
the class of distributions images via rotation.

Minimization: analytical solutions are known in severases.
The optimal rotation is unknown faf > 3.



MEASURING CHIRALITY: GENERAL THEORY

We consider a colored mixtut¥ in R?,
Its inertia7l’ is assumed to be finite and non null.

We consider the colored mixture¥ distributed as rotated and
translated inverted images 4f.

In other words, the distributions of and X are images through
some indirect isometry, i.e. through composition of sontatron
R and translatiorn and mirror inversion.

Remark: we have the constraints induced i = K

Definition of the CHIRAL INDEX

X = %Min{37t}D2
D* = InfanB(X — X) - (X — X)) .
{W}: set of all joint distributions of X, X).

Properties

x depends only on the distribution oK, X)
Y IS insensitive to rotations, translations, inversionsl scaling
x takes values oft); 1]

x =0 IFand ONLY IF the distributionis ACHIRAL



Other properties of the chiral index

The minimisation for translation is reached o)X = £X
(and the optimal rotation is analytically known itt and in ??)

X = gpMinggyInfuy E[(X — X)' - (X — X))

1=d
X =41 — [Suprwy ; ci)/T]

{W}: set of all joint distributions of X, X).
c¢;. covariance attached tothe axi§ = 1...d)

When the mixed distributions are all those of a.s. consteciors:
(i.e. never two of them have the same color)

X = d\g/T (A\q is the smallest eigenvalue Gfov( X))

Here the maximuny = 1 is reached whe@'ou(X) is
proportional the the identity matrix.

Case of samples (modelizes a fnite set @foints in RY)

X rectangular array af lines andd columns
A: centering operatord =1 — 11'/n
I': identity matrix of sizen
1: vector of sizen with all components equal tb
P: permutation matrix of ordet (eqv. to a joint distribution)
Q): arbitrary fixed orthogonal matrix of orderwith det(Q) = —1

X = 1= Mingppy[Tr(X — PXQ'R')YA(X — PXQ'R))]



"Continuity” property

We would like something like that:

"closer” two distributions are, closer their chiral indgcare.

with a weak convergence criterion for distributions,
so that we can get a strong theorem.

NON COLORED case

X,,: random vector with probability distributioR,
X: random vector with probability distributioR

X, Is a sequence of random vectors converging tm law

Assumptions:
E[X'X] exists
EX' X, — E[X'X]
E[(X - EX)(X —EX)]#0

Theorem: x(P,) — x(P)

Works for samples of a parent population: estimation @?)

COLORED or non colored case: samples

x is a continuous function of the array
(any matricial norm works)



THE DIRECT SYMMETRY INDEX

COLORED or non colored case: samplessqually weighted points)

X rectangular array af lines andd columns
A: centering operatord =1 — 11'/n

I': identity matrix of sizen

1: vector of sizen with all components equal tb
P: permutation matrix of ordet

DSI = =Mingpy p[Tr(X — PXR'YA(X — PXR)]

DS is a continuous function ok, taking values on; 1].
It is insensitive to rotations, translations, inversiond acaling.

BUT: cannot be extended to continuous distributions.
(notice the conditior? # I and its consequences)

It is due to the problem itself,
NOT to the Wasserstein distance

The problem is partly solvable for finite sets of rotations.



Some extremal figures

THE MOST CHIRAL TRIANGLE WITH ALL
NON-EQUIVALENT VERTICES IS EQUILATERAL

x=1

This result generalizes in any dimension: the most chimapgex
with all non-equivalent vertices is regulay:= 1.

Remark:only the vertices are considered
not the interior, the sides, the faces, etc.



THE MOST CHIRAL TRIANGLE
WITH 2 EQUIVALENT VERTICES

Distances ratio:\/l —v6/4:1: \/1 +6/4

X=1-+v2/2



THE MOST CHIRAL TRIANGLE
WITH 3 EQUIVALENT VERTICES

(we are no more in the colored case!)

Distances ratiol : /4 + /15 : \/(5 +/15)/2

x=1-2V5/5



THE UNEQUIVALENCE OF ALL VERTICES PRECLUDES
THE EXISTENCE OF ANY DIRECT SYMMETRY:

AT LEAST 2 POINTS SHOULD BE EQUIVALENT.



Q
@

ONE OF THE MOST DISSYMETRIC TRIANGLES
WITH 2 UNEQUIVALENT VERTICES

Abscissas{—1 — v/3)/2,(—1+v/3)/2,1

THIS DEGENERATE TRIANGLE IS SUCH THAT
DSI =1 INANY DIMENSION.



THE MOST DISSYMETRIC TRIANGLE
WITH 3 EQUIVALENT VERTICES

Angles:7/4,7/8,57/8

DSI =1—+/2/2



REMARKABLE PROPERTY OF THE 5 EXTREMAL TRIANGLES

The 5 extremal triangles have the following geometric prope

The squared lengths of the sides are equal to three times
the squared distances vertex-barycenter:

d2(p2,p3) = 3d2(p1, 9)
d*(p1, p2) = 3d*(pa, g)

d*(p3, p1) = 3d*(ps, g)

g=(p1+p2+p3)/3
CARE:
THE RELATION IS SYMMETRIC EOR TWO POINTS ONLY



ASYMMETRY COEFFICIENT AND MULTIVARIATE SKEWNESS
(no more colors)

Karl Pearson’s skewness (1895) is null
for many "asymmetric” distributions.

The chiral index is null << IF and ONLY IF >>
the distribution is indirect-symmetric

Other advantage over multivariate analogs of Pearsonsrekes:

the existence of the third-order moments is not required
(the existence of the inertia suffices)

UNIVARIATE CASE

X = (1 + Tmin)/Q

rmin 1S the lower bound of the correlation coefficient between the
distribution and itself.

It is shown that,,;, cannot be positivey € [0; 1/2]

The upper bound is asymptotically reached by the Berndawi
with parametefn — 0 orm — 1.



The Bernouilli distribution of parameten: explicit calculation

Pr(X=0)=1-m Pr(X=1)=m
EX=m T=Var(X)=m(l —m)

We takeY distributed asX. The marginals andY are known:
we parametrize their joint distributions by the quantjty

q=Pr(X =0,Y =0)

Then we get the set of joint distributions Y, Y):

Pr( X =0,Y =0)=gq q>0

PriX=1Y =0)=(1-m)—¢q q<(1— m)
PH(X =0,Y = 1) = (1—m) — g < (1—m)
PriX=1L,Y=1)=m—(1—-m—gq) q>(1—2m)

E(XY)=2m—-1+q Cov(X,Y)=02m—1+q) —m?

r=la— (1 —m)/m(1 —m),

We get y from the minimization of Cov(X,Y)

The minimum is reached either for= (1 — 2m) or for ¢ = 0,
depending omn.

If m €]0;1/2] then r,,;, = —m/(1-m) and y = 1—1/(2—2m)

If m e [1/2;1] then r,;, = —(1—m)/m and x =1—1/2m

x =0 IFand ONLY IF m = 1/2



THE 3 POINTS SET ON THE REAL LINE

This is the simplest chiral set which can be built:
no color, no weightsy = 1, only 3 points, only one parameter.

« is the distance ratio between the two adjacent segments.
The following properties are mandatory for any chiralityasere:

(a) It must depen®NLY ona

(b) It must be a continuous function of

(c) It must be null whem = 1

(d) It must be nullONLY fora =1

(e) It must return the same value t@and1 /« (scaling invariance)

The chiral index satisfies to (a)-(e):

x = (1—a)?/4(1 +a+a?)

Sophisticated multivariate chirality measures and asymmey
coefficients must be first checked against the 3 points sets in
order to see whether or not properties (a)-(e) stand.



SAMPLING / SYMMETRY TESTS

Letx;,, (i =1,...,n) be theORDERED sample of size.

Observed sample mean:z
Observed standard deviations.

The minimal correlation is reached when
the sample sorted in ascending order is correlated with
the sample sorted in descending order.

Tmin = [Ziiz(xzn - f) (xn—i-l—i:n - f)]/no—z
Xn = (1 + Tmin)/Q

The chiral index is easily computable on a pocket calculatar

Other expressions gf from the embedded intervals

From halfrangelengths v, =1 — [i(xi:”_xg“—i:”)?]/(na?)
1=1

1=n

Frommidranges x, = [> (Hetast=in)2 . 2]/ (no?)
1=1

The ratio above is: variance of midranges / sample variance

Symmetry tests asymptotic distributions of,, ?7?
(under normality assumption, or uniformity assumptiomtbier...)



BIVARIATE DISTRIBUTIONS

Wasserstein distance (colored or not) between the disitwigi of
X andY’, minimized for rotation:

D? = E[X'X] + E[Y'Y] - 2|G|

G? = (E[X'Y])? + (E[X'TIY])? 11—[? 31]

X, and.X; are identically distributed if? (joint distributions:1W)

X =FEX, = FEX,

T=FEX - X)(X1 - X)=E(X; - X) (X2 - X)
X = 1= Supgwylpn — pol /T

(u1 — po) is the difference between the two eigenvalueslof

(= p2)? = [Tr(V)]? = 4Det(V)

2V = E|(X; = X)(Xo — X)' + (X2 — X)(Xy — X)]

Expression in the complex plane

Complex random variables andz,, identically distributed
(joint distributions:W)

z = EZl :EZ2
T = El||z1 — 2|I*] = Elllz2 — 2|7

X =1— Suppyy|E(z1 — 2)(22 — 2)|/T



BIVARIATE SAMPLES

X array of then observationsy lines and2 columns
Inertia: T =Tr(X'AX)/n
A=1-11"/n (centering operator)

P: permutation matrix of size

X =1— Maxpy|pu — po|/nT
(11 — p2) Is the difference between the two eigenvalueslof
(= p)* = [Tr(V)]* — 4Det (V)

V = (AX)/(P + P')(AX)/2

In the complex plane:z € C" contains the: observations

X =1—[Max(py(Az)'P(Az)|/nT

In the non colored case:

Theorem 1 There is an optimaP which is symmetric.
(P'=P)

Theorem 2 Sup(x) € [1 —1/m;1 —1/27]
(stands also for continuous distributions)

Conjecture:  Sup(x)=1-1/m



Family of sets conjectured to be of maximal chirality:
(asymptotic)

Sup(x) =1—1/m

The calculations are easier in the complex plane.
Fix ¢ >0 thenchoose even integer > 1/e.

= ei(27r)/(2m) (w2m _ 1)

Select an integer r > m*/¢* then
select an even integerk > ™1 /e

z € C" zisacomplex vector ofn + 3 blocks of elements
Each block; (; = 0..m + 2), contains identical elements.

n=1l+r+r2+. .+ 4 k4 b4

Jj=m-—-1
S= > wiri? (zissuchthat 2’1 =0 and 2'z=0)
j=0

block 2 multiplicity
0 1 1
1 w/rH? r
2 w? 7 7
i W /}j/2 i

m _ 1 wm—l/;ﬂ(m—l)/Q ,rm.—l
m —S/k k

m+ 1 iS/k k/2

m + 2 —iS/k k/2




e=0.750
m=2: m+3=5:r=29
k =0.400E+02 : n=0.110E+03



e= 0.500
m=4: m+3=7:r=1025
k=0.215E+10: n=0.539E+10



e=0.250
m=6;m+3=9;r=20737
k=0.153E+23; n = 0.345E+23



e=0.250 Deleted points: 1 Scaling: 144.
m=6;m+3=9;r=20737
k=0.153E+23; n = 0.345E+23



e=0.250 Deleted points: 2 Scaling: 20737.
m=6;m+3=9;r=20737
k=0.153E+23; n = 0.345E+23



TRIVARIATE DISTRIBUTIONS

Wasserstein distance (colored or not) between the disiwiigiof
X andY, minimized for rotation:

D? = B[(X — Y)(X —Y)] - 2¢ Bq
¢. unit quaternion associated to the largest eigenvalug of

B_ 0 | ElY A X]
|\ EYAX)(Z+Z)—1-Tr(Z+Z')

Z = E[Y X']

Remark: the three componentsiofy” A X|
are computed from the elementsof

SettingX centered and” distributed as- X:
X = grInfuy D?
W joint distribution of (X, Y)

In the non colored case:
Theorem:  Sup(x) € [1/2;1]

Sup(x) =177



HIGHER DIMENSIONS

The following family X of finite discrete distributions has a chiral
index y. tending tol /2 whene tends to zero.

There arel + 1 weighted points ink? (simplex).

X.: array of thed + 1 points
M respective weights of thé+ 1 points

( 0 0 ... 0 ) X
/e 0 .0 2 i=d
X.=] 0 1/e2 ... 0 M=21l" c=> g%
: : 8éd 1=0
\ 00 et

This family of discrete distributions is asymptoticallpisertial,
l.e. its covariance matrix tend to be proportionalto

Lim.—o(x:) = 1/2

This is an optimal upper bound for the chiral index whkge 1,
but not ford = 2.

Calculating this upper bound for amyis an open problem.
(and the optimal rotation is unknown far> 4)

Conjectures

- The uper bound of the chiral index is asymptotically reddha
only for isoinertial distributions.

- This upper bound is unreachable for ahy



MISCELLANEOUS

Colored sample:
X = 1 Mingpp|Tr(X — PXQ'RYAX — PXQ'R)

Can be generalized when theoints are the vertices ofgraph,
{ P} being the set of permutations associated to the
GRAPH AUTOMORPHISMS .

Examples in chemistry

The graph of the water molecule H-O-H has three nodes
and two edges, and has 2 automorphisms.

The graph of Br-CHF-Cl has 5 nodes and 4 edges,

and has only 1 automorphism.

(assuming a regular tetrahedron geometry, we would kavd,
and NOTy = 0).

Generalizing the case of samples of colored mixtures:
Cyclobutane squeletton Cthere are 8 permutations, not 24
although there are no colors!

Works with colors, but difficult to generalize to continuous
distributions, even without colors.

SOME OTHER OPEN PROBLEMS

How << idealize>> a quasi-achiral set ?

How measure chirality when the mass is infinite ?
(lattices, infinite helices, etc.)



